
1. Introduction
Droughts are extreme events associated with water deficiency for an extended period that causes economic and 
environmental losses and can be classified into four types: meteorological drought (precipitation deficit), agricul-
tural drought (soil moisture deficit), hydrological drought (streamflow deficit), and socioeconomic drought (so-
cial responses in terms of water supply and demands) (Wilhite & Glantz, 1985). Drought studies are steadily con-
ducted to understand the causes, to plan for future drought, and to characterize different types of droughts (Folger 
et al., 2013; Gavahi et al., 2020; Kuwayama et al., 2019; Madadgar & Moradkhani, 2013; Staudinger et al., 2014). 
The southeast US is gaining more attention for drought risk due to more frequent and severe droughts (Engström 
et al., 2020; Martin et al., 2020). For example, the agricultural losses from Texas 2011 drought were around $7.6 
billion, making it the costliest drought in the state's history (Fannin, 2012).

Tropical storm (TS) is another extreme event frequently landfalls in the US that causes substantial economic 
and environmental damages and fatalities (Elsner et  al.,  2008; Emanuel,  2005). TS with wind speed greater 
than or equal to 74 mph is classified as tropical cyclone (TC) by the Saffir-Simpson scale (Simpson, 1974). TCs 
are becoming more severe due to warmer ocean water temperatures under climate change (Elsner, 2020; Ema-
nuel, 2020; Kossin et al., 2020). Indirect hazards such as flooding and storm surges occur in coastal regions due 
to the strong winds and heavy rainfalls from TC (Rappaport, 2014; Touma et al., 2019). Although TCs are well 
known for their devastating wind storm and torrential rainfall, in some cases, they result in interacting positively 
with drought (Maxwell et al., 2013).

Several studies in the past sought the contribution of TC to drought conditions: TC that causes a pendulum swing 
from drought (Palmer Drought Severity Index (PDSI) ≤ −2.0) to near normal or wet (PDSI ≥ −0.50) is known 
as Drought-Busting TCs (Maxwell et al., 2013, 2012; Palmer, 1965). TC occasionally leads to shorter and less 
severe droughts with a belated initiation (Kam et al., 2013). Frequent landfalls of TC during warm seasons are 
also found to mitigate droughts (Brun & Barros, 2014). Drought in coastal regions is highly affected by anomaly 
in TC rainfalls when compared to inland regions (Y. Jiang et al., 2016). Additionally, rainfall-induced by land-
falling TC plays a critical role in crop yield in agriculture dominating states in the US (Kellner et al., 2016). The 
above-mentioned studies are focused on TC rainfall. Whereas, Song et al. (2020) identified that rainfall is not 
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always proportional to the wind scale of the TC and therefore, in some cases TS events may accompany more 
rainfall relative to TC. Moreover, a plethora of studies have looked into TC weakening the drought intensity while 
drought worsened despite the presence of TC has received less attention. Furthermore, the contribution of TS on 
the drought intensity in the US at the continental scale is not often investigated.

Soil moisture is known as a key variable for agricultural drought monitoring in a multitude of studies (Berg 
& Sheffield, 2018; Gavahi et al., 2020; Hao & AghaKouchak, 2013; Martínez-Fernández et al., 2016; L. Xu 
et al., 2020, 2019; Y. Xu et al., 2018; Yin et al., 2020). Moreover, soil moisture is an important component in the 
hydrological cycle, which is estimated through in situ stations, satellite remote sensing, or hydrologic modeling. 
In addition, soil moisture is often used in drought-TC-related studies in order to derive storage capacity, define 
drought, and calculate drought index (i.e., PDSI; Brun & Barros, 2014; Kam et al., 2013; Maxwell et al., 2013). 
Since soil moisture is related to rainfall in most locations (i.e., soil moisture increases with rainfall) (Sehler 
et al., 2019), we applied soil moisture as a linkage between TS and agricultural droughts. Several historic rain-
fall events associated with Atlantic TC have resulted in a sudden transition from severe drought to significant 
flooding over just a few days and therefore end the drought. Examples are TS Imelda (2019) in September and 
Hurricane Harvey (2017) in late August over southeastern Texas; Hurricane Florence (2018) in September over 
North Carolina; Hurricane Joaquin (2015) in early October over South Carolina (Case et al., 2021). It is important 
to note that although the rainfall associated with the TS directly affects the soil moisture condition, some studies 
showed that the antecedent soil moisture anomalies contribute to the intensification of TS as the storm moves 
inland and meets favorable environmental conditions to evolve (Kellner et al., 2012). However, in conditions of 
insufficient soil moisture, such TS when landfall may decay more rapidly since there is no surface latent heat flux 
to sustain the system.

Global soil moisture product is available owing to the advanced technology of remote sensing such as the Soil 
Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity, Soil Moisture Operational Product Sys-
tem, etc. Spatial resolution of the soil moisture data derived by satellite are still coarse while hydrological- and 
agricultural applications require finer-scale (kilometer or sub-kilometer) soil moisture data due to spatial heter-
ogeneousness (i.e., land use, vegetation, and topography) in regional or local areas (Hssaine et al., 2021; Tian 
et al., 2020). Different downscaling approaches are developed based on the need of high-resolution soil moisture 
data (Guevara & Vargas, 2019; Montzka et al., 2018; Yin et al., 2020). Moreover, recent studies have utilized 
1 km scale soil moisture data for drought monitoring and revealed finer resolution data provide more detailed 
information in heterogeneous areas (Abbaszadeh et al., 2021, 2019; Fang et al., 2021; Gavahi et al., 2020; Yin 
et al., 2020). Literature indicates the inefficacy of previous studies in identifying the TS-drought relationship at 
regional or local level as they did not use the soil moisture data at kilometer or sub-kilometer scales which are 
crucial for effective agricultural practices and farm-level studies (Brun & Barros, 2014; Kam et al., 2013; Max-
well et al., 2013). In addition, these studies have not considered the root zone soil moisture which is important 
from an agricultural point of view since agricultural drought is best characterized by deficiencies in soil moisture 
in the root zone (Ajaz et al., 2018; Mladenova et al., 2020).

Therefore, with the given background the novelty of this study is the quantification of agricultural droughts that 
are ameliorated or exacerbated when Atlantic TS occurred in the contiguous United States (CONUS) using high 
spatial resolution soil moisture data. Our study broadens the knowledge of drought-TC related researches by (a) 
a wider range of the storm data considering TS instead of TC, (b) utilizing high spatial resolution soil moisture 
data considering root zone soil moisture, and (c) assessing the droughts weakened by TS as well as the ones 
worsened after TS landfall. The present study seeks to answer the following research questions: (a) Can root 
zone soil moisture reflect the relationship between TS and agricultural drought? (b) How to link TS events with 
agricultural droughts to evaluate the droughts weakened and worsened by TS? (c) To what extent the agricultural 
droughts have been ameliorated or exacerbated by Atlantic TS? (d) In which regions do the TS events contribute 
more to agricultural droughts?

This article is organized as follows. Descriptions of the data and method are included in Section 2. Section 3 pre-
sents the results including standardized soil moisture index (SSI) map, frequency of TS events in the US, drought 
ameliorated or exacerbated by TS, the contribution of TS in each state, and impact of TS in drought duration. 
At the same time, we discuss the results, uncertainties in this research, and highlight the findings comparing to 
previous studies. Finally, Section 4 provides a summary of our findings with the conclusion.
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2. Data and Method
We use two different soil moisture data: the 1 km downscaled SMAP data and the SMERGE_RZSM0_40CM 
data. The 1 km downscaled SMAP data is generated at the Center for Complex Hydrosystems Research (CCHR) 
at the University of Alabama (Abbaszadeh et al., 2019, 2021). This data provides surface daily soil moisture data 
of the top 5 cm soil layer at 1 km spatial resolution from March 2015 to February 2020 over the CONUS. The 
SMERGE_RZSM0_40CM data is developed by merging the North American Land Data Assimilation System 
land surface model output with surface satellite retrievals from the Europeans Space Agency Climate Change 
Initiative. This data provides root zone daily soil moisture of 0–40 cm layer at 0.125° × 0.125° from January 1979 
to May 2019 over the CONUS (Hasenauer, 2010; Tobin et al., 2017).

We used the downscaled SMAP soil moisture data (surface soil moisture) from 2015 to 2019, and bias corrects 
it with the SMERGE_RZSM0_40CM data (root zone soil moisture). Although SMERGE is available since 1979 
to May 2019, we used only five years of it (2015–2019) in order to be consistent with the SMAP data which is 
available since 2015. The Cumulative Distribution Function (CDF) matching, a bias correction method, is used 
to reduce the systematic bias and to create a homogenous time-series from the two soil moisture data (Kornels-
en & Coulibaly, 2015; Wang et al., 2018). This method allows capturing the spatiotemporal dynamics of the 
soil moisture retrievals with respect to the reference data set. The downscaled SMAP data, comparing to the 
SMERGE_RZSM0_40CM data, advantages on its finer spatial resolution which is better for regional- and local 
studies while the surface layer depth is inappropriate for agricultural drought analysis. We expect to obtain a data 
set with high spatial resolution considering the root zone layer soil moisture by CDF matching which advantages 
from both soil moisture data. The CDF matching is performed as follows:

�1 = ����� − �2����� (1)

𝒅𝒅2 =
𝒔𝒔𝒔𝒔𝒅𝒅𝒅𝒅𝒔𝒔𝒔𝒔(𝚯𝚯𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 )
𝒔𝒔𝒔𝒔𝒅𝒅𝒅𝒅𝒔𝒔𝒔𝒔(𝚯𝚯𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺 ) (2)

𝚯𝚯𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒅𝒅1 + 𝒅𝒅2𝚯𝚯𝑹𝑹𝑹𝑹𝑩𝑩𝑩𝑩 (3)

where 𝚯𝚯����  denotes the 1 km downscaled SMAP data, 𝚯𝚯���� the SMERGE soil moisture data, 𝐴𝐴 𝒅𝒅1 and 𝐴𝐴 𝒅𝒅2 are 
parameters, and 𝐴𝐴 𝚯𝚯𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 is the bias-corrected soil moisture data.

The SSI is a drought index calculated from soil moisture and represents the agricultural drought. SSI is defined 
in a similar way to the commonly used standardized precipitation index (SPI; McKee et al., 1993). The detailed 
calculation of the empirical probability and the standardized index can be found in Gringorten (1963). First, the 
empirical probabilities (𝐴𝐴 𝒑𝒑 ) for each grid are obtained by Equation 4:

𝒑𝒑 = 𝒊𝒊 − 0.44
𝒏𝒏 + 0.12 (4)

where 𝐴𝐴 𝒏𝒏 is the sample size and 𝐴𝐴 𝒊𝒊 is the rank of the soil moisture data from the smallest to the largest. Then, the 
empirical probabilities are converted into the standard normal distribution function:

𝑺𝑺𝑺𝑺𝑺𝑺 = 𝚽𝚽−1(𝒑𝒑) (5)

where 𝐴𝐴 𝚽𝚽−1 is the inverse of the standard normal distribution function.

We generate a weekly drought map using the SSI and classify them similarly to the drought classification of 
the US Drought Monitor (Svoboda et al., 2002). According to the US Drought Monitor, drought magnitude is 
classified into D0, D1, D2, D3, and D4 indicating abnormal dry, moderate-, severe-, extreme-, and exception-
al-drought, respectively (Svoboda et al., 2002). We define D0, D1, D2, D3, and D4 when the SSI ranges −0.5 to 
−0.7, −0.8 to −1.2, −1.3 to −1.5, −1.6 to −1.9, and less than or equal to −2.0, respectively.

Hurricane Data 2nd generation (HURDAT2) provides a track record of date/time, location, and 6-hourly wind 
speed information when a TS event has occurred (Landsea & Franklin, 2013). The status of system such as TC, 
TS, and tropical depression are categorized by the sustained wind speed greater than or equal to 74, 39, and less 
than 38 mph, respectively. We broaden the range of storm-scale from TC to TS since the amount of rainfall from 
TS should not be treated the same as their lower wind speed (Song et al., 2020) while previous studies focused on 
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only TC (Brun & Barros, 2014; Kam et al., 2013; Maxwell et al., 2013). The movement of storms is recorded in 
the latitudes and longitudes of its center. We generate a 5° radius buffer to the trajectory of each event to assume 
the impacted area according to the TS event (H. Jiang & Zipser, 2010; Nogueira & Keim, 2010). Here, we assume 
that the TS-related rainfall will fall in the buffered area and it will interact with the soil moisture in the same 
area and may change the drought condition. We look at the frequency of TS and impacted regions in the US by 
overlaying the buffered trajectory of each TS events which landfall over the CONUS.

We look into the change in the weekly drought conditions after TS landfall to determine whether the drought 
was affected by TS. In preparation for changing drought conditions, we designate the drought weakening week 
when the week has a severe, extreme, or exceptional condition (D2–D4) and when the following week has a 
moderate drought or wetter condition (D1, D0, and no drought). On the contrary, we designate the drought wors-
ened week when the week has a moderate drought or wetter condition (D1, D0, and no drought) followed by a 
week with severe, extreme, or exceptional drought condition (D2–D4). Drought weakened week coincided with 
TS are defined as “drought ameliorated by TS”. On the other hand, drought worsened week coincided with TS 
are defined as “drought exacerbated by TS”. Note that we use the term “drought exacerbated by TS” to identify 
the concurrent event when the two extremes coincide, however, this does not mean that TS is the main cause of 
drought exacerbation.

Following the above evidence, we assessed the relationship between droughts and the TS in the CONUS. We cal-
culated the percentage of drought ameliorated (exacerbated) by the TS using the ratio of the number of droughts 
ameliorated (exacerbated) by the TS to the total number of drought weakened (worsened) weeks in the area. Then, 
we averaged the percentage of the droughts ameliorated (exacerbated) by the TS for each state and rank them 
in order. We computed the mean drought duration for the whole study period and evaluated the mean drought 
duration of the droughts ameliorated by TS for further analysis.

We use an unsmoothed version of the monthly Atlantic Multidecadal Oscillation (AMO) index to investigate 
whether the climate variability is related with the droughts in this study (Enfield et al., 2001). The AMO con-
tains information of the sea surface temperature anomalies relative to the long-term average and positive AMO 
is strongly associated with the increased drought frequency in the east coast (McCabe et al., 2004). In addition, 
we look into the annual corn yield data from the United States Department of Agriculture (USDA) National 
Agricultural Statistics Service (NASS) to analyze the impact of TS in corn yield during the drought (USDA 
NASS, 2017).

3. Results and Discussions
The SSI is widely used to detect the extent of soil moisture and monitor agricultural drought. The SSI plays an 
important role in our study as a linkage between TS and agricultural drought events. Figure 1 shows an example 
of one of the weekly drought maps among 213 weeks for the week in September 14–21, 2016. The pixel size 
(spatial resolution) is 1 km which contains information of the SSI. The dark red, red, orange, light orange, yel-
low, and white colors in the figure represent the exceptional (D4), extreme (D3), severe (D2), moderate (D1) 
drought, abnormal dry (D0), and no drought, respectively. As for the specific week shown in Figure 1, severe-, 
extreme-, and exceptional-droughts were observed in the East coast (i.e., North Carolina, Virginia, West Virginia, 
and Pennsylvania) while moderate drought and wetter conditions were observed relatively in the South US (i.e., 
Texas, Louisiana, and Florida) and Midwestern US (i.e., Missouri, Illinois, and Indiana). The presented drought 
map for this specific week also matches the drought map provided by the US Drought Monitor which strengthens 
the validity of the results in the current stage. The drought map for each week is different as the drought intensity 
derived by SSI is unevenly distributed over the CONUS considering time and space. The weekly drought map 
will be used to examine the drought weakened (worsened) weeks, then it will be overlayed with TS to define the 
drought ameliorated (exacerbated) by TS.

Based on our selection of TS from HURDAT2, 62 events were found to have the intensity of TS while 27 events 
among the 62 events have landfall or reached near the coastline of the CONUS during the study period. Thirty 
four states in the US have experienced a TS event at least once while some of the areas have experienced 17 TS 
during the study period (Figure 2). Some of the areas in North Carolina, Virginia, Tennessee, Georgia, Delaware, 
and Maryland are found to be frequently impacted by TS, while Texas, Louisiana, and Mississippi are relatively 
less impacted by the number of TS during the whole study period.
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We combine the buffered trajectories of the TS with the drought weakened (worsened) weeks and compute the 
percentage of the drought ameliorated (exacerbated) by TS (Figure 3). Dark red to yellow colors show the cri-
teria of different percentages and the gray color shows regions where there were no TS events at all. Droughts 
ameliorated by TS are widespread in the eastern US (Figure 3a). The droughts ameliorated by TS are observed 
at a higher rate (over 25%) in some of the areas in Georgia, Tennessee, Kentucky, and Virginia. Comparing to 
the droughts ameliorated by TS, the droughts exacerbated by TS are similarly widespread but more shifted to the 
Eastside (Figure 3b). We found that TSs which are affecting droughts occur relatively in a higher latitude and 
inland, while the coastal areas in the Gulf of Mexico are showing a low rate of droughts recovered by TS. For 
example, 25% of droughts ameliorated by TS in Georgia (e.g., total number of experienced TS is 12) indicates 

Figure 1. Drought spatial distribution map based on weekly SSI for September 14–20, 2016.

Figure 2. Frequency of TS events and the impacted regions in the US based on HURDAT2 track records with 5° radius 
buffer.
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either 1 TS event out of 12 TS events ameliorated drought when drought condition has weakened 4–48 times 
during the study period.

To investigate the contribution of TS in drought amelioration (exacerbation) in each state in the US, we average 
the group of pixels for each state (Figure 4). Here, we obtain the rank of states where drought was affected by TS. 
Droughts in Virginia (13.6%) are most weakened by TS and are followed by Tennessee (13.5%) and Maryland 
(12.6%) when averaging the percentage of drought ameliorated by TS for each state (Figure 4a). States in the 
eastern coastline in the US are more likely to be affected by TS and weaken droughts, including Tennessee and 
Kentucky. As for the drought exacerbated by TS, New Jersey (16.0%) have the highest rate and is followed by 
Delaware (15.8%) and the District of Columbia (14.1%) (Figure 4b). According to the plot, we find that droughts 
in Texas, Louisiana, Mississippi, and Florida are less influenced by TS, and the white-colored area shows that 

Figure 3. Percentage of drought ameliorated and exacerbated by TS in the US.
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none of the TS have affected drought in these areas (Figure 3). These states are near to the location where some 
of the powerful and destructive TS landfall (i.e., Hurricane Harvey (2017) and Michael (2018)). This implies the 
drought in the Gulf of Mexico is relatively irrelevant to TS. On the other hand, droughts in the eastern coastal 
states such as Virginia, Delaware, Maryland, New Jersey, and the District of Columbia are more likely to be af-
fected by TS in either a positive or a negative way.

Our results indicate that how frequent the TS landfall in the CONUS is and show the ratio of drought amelioration 
and exacerbation during the study period. A low rate (less than 14%) of agricultural droughts turned out to be 
ameliorated by TS in the US (Figure 4a). On the other hand, a low rate (less than 16%) of agricultural droughts 
turned out to be exacerbated by TS (Figure 4b). These percentages are calculated by averaging the percentage 
of drought events affected by TS for each state and thereby we conclude that not many agricultural droughts are 
affected by TS in the US. Especially, states in the Gulf of Mexico were found to have a relatively low percentage 
of drought ameliorated (exacerbated) by the TS. The reason for the difference in the response of droughts to TS 
landfall (either amelioration and exacerbation) is potentially due to that the amount of precipitation and wind 
speed is not proportionally associated with the TS (Song et al., 2020) and the variable intensity of the droughts 
across space and time. Our results corroborate with the findings of the other studies that indicated the percent-
age of droughts ended by TS are relatively higher in the East coast states than the South coast states (Maxwell 
et al., 2013, 2012).

Although the infrequent droughts are affected by TS, based on the order of the states in Figure 4, one can tell in 
which states the TS events contribute more to agricultural droughts. Droughts in some of the inland states (Ten-
nessee and Kentucky) and the East coast states (Virginia, Maryland, and Rhode Island) have a relatively higher 

Figure 4. Percentage of drought ameliorated and exacerbated by TS in each state in the US.
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probability to be recovered by the TS. However, it is to be noted that in this study we also found that many of 
the droughts were also exacerbated in the East Coast states. In the same East Coast states including New Jersey, 
Delaware, District of Columbia, Maryland, and North Carolina we noticed that the droughts are also worsened 
after TS.

We further examine the drought duration, one of the drought characteristics, to compare the difference between 
the drought duration for the whole study period and the drought ameliorated by TS. Here, we focused only on the 
drought duration ameliorated by TS because the drought recovering TS associate with the drought offset while 
exacerbating TS associated with the drought onset, and it is difficult to discuss the drought duration with only the 
onset of drought. Figure 5a illustrates the drought duration during the study period for the TS impacted regions 
with color legend describing the length of the duration in weeks while Figure 5b presents the drought duration of 

Figure 5. Mean drought duration in the US during April 2015 to April 2019 and the mean drought duration for the drought 
events ameliorated by TS during the same period.
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the drought ameliorated by TS. Note that the white colored area means that none of the droughts were ameliorated 
by TS. In addition, we generate box plots to look in details of the drought duration for each state (Figure 6). The 
order of the states is given by the median drought duration (red), and the dashed lines (black) extend to the most 
extreme data points not considered outliers.

According to the mean drought duration map, the droughts ameliorated by TS have longer mean drought du-
rations (Figure 5). Relatively darker colors are observed in the location where TS have ameliorated droughts 
(Figure 5b) when compared to the mean drought durations estimated for the whole study period (Figure 5a). 
This implies that the drought duration of some of the droughts ended by TS might last longer if there were no 
TS to end them and TS have positively affected droughts. For example, Illinois was found to have approximately 
1-month median drought duration during the whole study period (Figure 6a), while the median drought duration 
of droughts ameliorated by TS was approximately 9 weeks (Figure 6b). Iowa, Texas, Illinois, Michigan, Missouri, 

Figure 6. Box plot of the drought duration and drought duration ameliorated by TS in each state in the US.
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Ohio, Arkansas, and Indiana are found to be the states with longer drought duration affected by TS, although 
these states have less experienced TS. Some of the results might be contradictory when comparing the percent-
age of droughts ameliorated by TS and the drought durations ameliorated by TS. For example, Texas is one of 
the states with a relatively small number of TS impacted and lower percentage of droughts were recovered by 
TS, however, the drought duration ameliorated by TS in this state is longer than other states. This indicates that 
inland states (Iowa, Illinois, Michigan, Missouri, and so on) are less affected by TS, but some areas in the inland 
states are positively affected by TS in terms of drought duration since the median drought duration from droughts 
ameliorated by TS are relatively longer than the median drought duration for the study period. States in the East 
coastline (e.g., District of Columbia, Maryland, South Carolina, and North Carolina) are more affected by TS, 
and the drought duration ameliorated by TS (Figure 6b) is similar to the normal drought duration (Figure 6a).

While there is a consensus that the landfall resulting from the TS can potentially ameliorate droughts, in this study 
we found that in the states New Jersey, Delaware, District of Columbia, Maryland, North Carolina, Massachu-
setts, Georgia, Connecticut, and Virginia over 10% of the droughts are exacerbated after TS. Although in some 
cases, drought in the East coast states was exacerbated after TS landfall, the drought exacerbation was not able 
to be explained only by the TS since TS accompanies with either large or small amount of precipitation and raise 
the soil moisture. If we have to find the reason from TS, we could only assume that the amount of precipitation 
related to TS was not enough to meet the level to raise the soil moisture to weaken the drought.

As for an alternative approach, we look into the AMO index and create a heat map to see if the drought exacer-
bated by TS is related with climate variability (Figure 7). The heat map shows that AMO index was positive most 
of the time during the study period (from April 2015 to April 2019) except for few months in 2018 and 2019. The 
possible explanation for the exacerbation of the drought post-TS can be due to positive AMO (Figure 7) during 
the majority of the months within the study period (April 2015 to April 2019). Positive AMO is strongly associ-
ated with the increased drought frequency in the east coast (McCabe et al., 2004). Moreover, at a given location 
the TS landfalls are generally intense and short-lived (Zhou et al., 2018). Therefore, these landfalls provide a 
short-term reduction in drought intensity (since the majority of the water flow into drainage channels, rather than 
infiltrating into the soil), but the impacts of AMO during the positive phase is long-term which is often more 
than a month (Murgulet et al., 2017). Similar results of insignificant amelioration of monthly droughts due to TS 
landfall is also reported by Misra and Bastola (2016) across 28 catchments in the southeast US.

Figure 7. Unsmoothened monthly AMO index from 2015 to 2019.
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To investigate whether the drought amelioration (exacerbation) associated with TS have any positive (negative) 
impact on agriculture, we evaluated the relationship between droughts with and without TS at county scale corn 
yield (derived from USDA). In our analysis, we compared corn yield for several counties which were under 
drought conditions (but no TS events) against corn yield under drought conditions with TS events for the cor-
responding counties. Here, the temporal interval for pre- and post-TS is weekly, and the corn yield is annual. In 
general, the corn planting starts in April and harvesting season ends by November. We only consider the TS that 
landfall between April and November so that the TS is involved in the middle of the corn growing period and 
check the drought condition accordingly. For demonstration here, we present the corn yield for 12 and 7 coun-
ties from Texas and Virginia, respectively, during drought and drought with TS events (Figure 8). Based on our 
analysis, we found that counties in both states were affected by droughts during 2015 (no TS), 2017 (TS Harvey 
landfall in Texas during drought), and 2016 (TS Hermine landfall in Virginia during drought) (Figures S1 and 
S2 in Supporting Information S1). According to our analysis, corn yield increase for all the counties in 2017 
(post-Harvey in Texas) (Figure 8a), whereas, the yield reduces in Virginia in 2016 (post-Hermine) (Figure 8b) 
relative to corn yield in 2015. As for Bee and McLennan counties in Texas, the reason of insignificant corn yield 
is likely due to flooding and strong winds from Hurricane Harvey (Perroni, 2017). Furthermore, student's t test 
conducted for the corn yield for pre- and post-TS years suggest the rejection of null hypothesis (p-value <0.05) 
that the corn yields are same. Therefore, statistically, we observe different corn yields at both states for pre- and 
post-TS. These results are consistent with the findings of our study and illustrate that droughts ameliorated or 
exacerbated by TS have severe positive and negative implications respectively on crop yield. Our analysis demon-
strates how the associated TS and drought relates to crop yield which is a step ahead relative to the existing studies 
where analysis of the previous studies are limited only to the relationship between drought and TC.

In this study, the high-resolution root zone soil moisture data plays an important role in characterizing agricultur-
al drought, representing the water-related to TS in terms of drought amelioration, and linking the two extremes. 
However, there is a limitation that affects the derivation of agricultural drought: short data length (4 yr). Since SSI 
is a statistical index, the values are highly dependent on the length of the data. Fortunately, as for the South and 
East US regions, the weekly drought map we created matches well to the weekly drought map provided by the US 
Drought Monitor. The 1 km downscaled SMAP data would be more useful in the future as the length of the data 
is getting longer since it is adding up current records to the data set starting from March 2015.

Here, we list some other factors that have uncertainties in terms of connecting the Atlantic TS to agricultural 
drought. First, we assumed that the precipitation from TS is correlated with soil moisture although they are not 
always positively correlated. According to recent studies, most of the locations in the CONUS have shown a pos-
itive relation between precipitation and soil moisture (Guillod et al., 2015; Sehler et al., 2019; Yang et al., 2018). 
With the assumption, we were able to utilize the soil moisture data as a linkage for TS and agricultural drought 

Figure 8. Corn yield derived from USDA for 12 and 7 counties in Texas and Virginia, respectively.
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and conclude that the amelioration of drought is due to TS-related precipitation. Other than that the probability 
of drought ameliorated (exacerbated) by TS would not be valid. Second, the 5° radius buffer, which represents 
the impacted area from TS, is another source that could create uncertainty. We assumed TS-related precipitation 
falls all over the buffered area while precipitation does not always fall all over the place in practice (H. Jiang & 
Zipser, 2010). A shift in the buffer size or location will lead to a difference in the TS impacted regions in the US 
(Figure 2) and change the subsequent results one after another. For example, states or counties will be limited 
when a smaller buffer is applied. Third, the difference of the temporal resolution of the two extremes may create 
uncertainty. In this study, the difficulty of evaluating the shorter lifetime of landfalling TS (generally a few days 
to weeks) on longer remaining droughts (generally months to annual) are alternatively compromised utilizing 
weekly drought conditions to deal with the disputed lifespan of two different extreme events in this study. Finally, 
we used soil moisture and an empirical method to derive the SSI when there are other hydrological variables 
(i.g. precipitation), multivariate indices, parametric approach, and other conditions such as climate change and 
land use that can be considered to improve this study (Karimiziarani et al., 2022; Liu et al., 2017; Shukla & 
Wood, 2008; Waseem et al., 2015; Xing et al., 2020; L. Xu et al., 2020; L. Xu, Chen, Yang, Zhang, & Yu, 2021).

The percentage of drought ameliorated or exacerbated by TS based on the drought map ranges widely from 0 to 
more than 25%. When we group the percentage of drought ameliorated or exacerbated by TS into states, it shows 
a low rate where drought amelioration is less than 14% and drought exacerbation is less than 16%. This is because 
we considered all the 0% (white colored area in Figure 3) when averaging the drought ameliorate (exacerbated) 
by TS. For example, the probability of drought ameliorated by TS in Texas is 0% in more than half of the area 
in Texas. Some of the areas in Texas shows rate which is more than 10% (light orange, orange, red, and dark red 
colored area in Figure 3a). If we only consider the areas with positive percentage, the rank of the states shown in 
Figure 4 will be different. Nevertheless, we cannot generalize the information for the whole state based on a small 
portion of area nor conclude Texas has a higher probability of drought ameliorated by TS. In addition, the diverse 
characteristics of drought in a single state was inevitable due to the high spatial resolution data. This implies that 
some of the areas in the states with low percentage of drought amelioration may have chance of relatively higher 
probability of drought ameliorated by TS.

Overall, droughts in the East coast states (Delaware, District of Columbia, Maryland, New Jersey, and Virginia) 
including Georgia are more likely to be ameliorated or exacerbated after TS landfall when considered a threshold 
level of 10% for both amelioration and exacerbation. Droughts in Kentucky, Maine, Pennsylvania, Rhode Island, 
Tennessee, and West Virginia have relatively higher probability to be ameliorated than exacerbated by TS while 
Connecticut, Massachusetts, and North Carolina have relatively higher chance of exacerbation than amelioration.

The outcomes of this study are widely applicable for agricultural and water resources management studies and 
policymaking. The general perception that TS events are likely to ameliorate droughts is not true for all TS and 
droughts, especially in the East coast states. Therefore, the state governments/farmers might rely on the TS fore-
cast for their crop planning, but drought may be persistent even after the TS during droughts. This might result in 
more water allocation for the irrigation and hence robust planning including modeling is paramount.

4. Conclusions
Our study is conducted to quantify the role of Atlantic TS in agricultural drought in the US. We generated a 
weekly drought map using SSI based on a high-resolution root zone soil moisture data set and then combined the 
drought events with TS events considering time and space to find whether the drought condition changes after 
TS occurs. We investigated whether the agricultural droughts are ameliorated or exacerbated by TS, and if so, 
how many of them are affected by Atlantic TS. Our study reveals that Atlantic TS are weakening and worsening 
agricultural drought in the US and that states are affected by TS from different perspectives. We were able to un-
derstand the characteristics of agricultural drought based on the weekly SSI map, and how each state is exposed to 
the risk of TS based on the frequency of TS and impacted regions in the US. We found that agricultural droughts 
in the East coast states are relatively experiencing more frequent and have more probability to be exacerbated 
after TS landfall due to climate conditions. Agricultural droughts in the Gulf of Mexico are infrequently amelio-
rated or exacerbated by Atlantic TS although TS offset droughts with longer duration in part of the states. Our 
research can be further studied and improved by composing a parametric multivariate drought index, extending 
the length of data, adding more details in evaluating the relationship between agricultural drought and TS. Our 



Earth’s Future

SONG ET AL.

10.1029/2021EF002417

13 of 15

findings indicate detailed spatial information of the offset of drought conditions based on a high-resolution data 
set and provide potential information in terms of mitigating drought and TS for the future.

Data Availability Statement
One km downscaled SMAP soil moisture product can be accessed by CCHR website (https://moradkhani.
ua.edu/smap). Rootzone soil moisture (SMERGE_RZSM0_40CM) is available at NASA Goddard Earth 
Sciences (GES) Data and Information Services Center (DISC) (https://disc.gsfc.nasa.gov/datasets/SMERGE_
RZSM0_40CM_2.0/summary). Atlantic tropical storm data (HURDAT2) can be downloaded from the National 
Hurricane Center Data Archive (https://www.nhc.noaa.gov/data/#hurdat).
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